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Convergent and Convenient Total Synthesis of Phytoalexin-Elicitor Active Heptasaccharide
by One-Pot Sequential Glycosylation
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Convergent and convenient total synthesis of branched
hepta-B-glucoside 1 having phytoalexin-elicitor activity was
efficiently accomplished by way of two one-pot sequential
glycosylation reactions. Trisaccharide 8 was synthesized in high
yield by TfOH-catalyzed one-pot glycosylation using three
component monosaccharides and subsequent selective deprotec-
tion of a 6’-O-TBDPS group. The second one-pot glycosylation of
trisaccharide 8 with the three monosaccharides smoothly
proceeded to afford heptaglucoside 11 stereoselectively in 48%
total yield based on monosaccharide 3. The targeted compound 1
was obtained in high yield after the removal of the protecting
groups.

P. Albersheim et al. reported in 1984 that the elicitor-active
hexa- 8-D-glucopyranosyl-pD-glucitol, isolated from the mycelial
walls of Phytophthora megasperma f. sp. Glycinea, induces
antibiotic phytoalexin accumulation in soybeans.! Since then,
chemical synthesis of phytoalexin elicitor related B-glucans have
drawn much attention because of their complex branched
structures and biological activities.”™

Recently, several one-pot sequential glycosylation re-
actions*? for convenient synthesis of linear trisaccharides were
reported from our laboratory®’ by utilizing orthogonal proper-
ties® of donor and acceptor glycosides: that is, the combination of
glycosyl fluorides (or glycosyl phenylcarbonates) and thioglyco-
sides. Such one-pot procedures certainly reduced the number of
laborious and time-consuming purification processes of inter-
mediate saccharides. Therefore, it is important to show its
extended usefulness by applying the above-mentioned methods to
synthesis of complex branched oligosaccharides besides pre-
viously reported linear ones. In this communication, we would
like to report convergent and convenient total synthesis of methyl
heptaglucoside 1 by one-pot sequential glycosylation.

Figure 1. The structure of the hepta-f-D-glucoside 1 and component
saccharides employed.

Two one-pot glycosylation reactions were involved in
synthetic strategy for hepta-B-glucoside 1 (Scheme 1, 3).
According to our previously reported procedure,” it was
considered that methyl triglucoside 8 should rapidly be

constructed by TfOH-catalyzed one-pot glycosylation using
three component monosaccharides, 2, 4, and 6. Next, three
independent glycosylation reactions, the armed-disarmed glyco-
sylation using a pair of reactivity-tuned thioglucosides’ (3 and 5)
as well as orthogonal glycosylation® using the combination of
glucosyl fluoride 2 and thioglucoside 3 were employed in one-pot
for the formation of fully protected heptasaccharide 11. The
stereochemistry of glycosylation reactions was supposed to be
controlled by the assist of neighboring effect of 2-O-benzoyl
protecting group.
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Scheme 1. One-pot synthesis of trisaccharide unit 8.

Glucosyl fluoride 2 having 2-O-para-methylbenzoyl group
(p-MeBz) was prepared easily by treating the corresponding 1-O-
hydroxyl sugar!'® with diethylaminosulfurtrifluoride (DAST)'! in
CH,Cl,. o-Ethylthio glucosides 3 and 4 corresponding to 3, 6-
branching positions were synthesized from ethyl 2-O-benzoyl-
4,6-0O-benzylidene-3-O-chloroacetyl-1-thio-o-D-glucopyrano-
side'? by standard protecting group manipulations.

In the first place, synthesis of trisaccharide unit 8 was carried
out according to our previously reported one-pot procedure:’ that
is, TfOH-catalyzed glycosylation'® of thioglucoside 4 having a
free hydroxyl group at C-3 with glucosyl fluoride 2 to form the
corresponding disaccharide, which in turn was followed by
glycosylation of methyl glucoside 6 using NIS-TfOH promoter
system'* to give the corresponding silylated trisaccharide 7 in
high yield (86% based on 4). The desired trisaccharide unit 8 was
obtained in 93% yield after selective deprotection of the fert-
butyldiphenylsilyl (TBDPS) group on treatment with tetra-n-
butylammonium fluoride (TBAF) in the presence of acetic acid.

The second one-pot glycosylation of “4-units” was studied
in detail. In the first step, the double glycosylation of diol 3 having
thioglycosidic linkage with 2 molar amount of 2 was attempted in
the presence of 30 mol% of TfOH and molecular sieves 5SA (MS
5A), and terminal branched trisaccharide 9 was afforded directly
in excellent yield (Scheme 2). Next, the armed-disarmed
glycosylation with thus formed trisaccharide 9 was examined
using several disarmed thioglycoside acceptors by the promotion
of NIS-TfOH at low temperature (—60 to —50°C). The desired
tetrasaccharide 10a, however, was not obtained when pB-
phenylthio glycoside Sa was used as an acceptor since self-
coupling of 5a exclusively took place, and trisaccharide 9 was
recovered. Tetraglucoside 10b was also obtained in poor yield
even though less activated B-glycoside 5b having p-ClBz group
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was used. On the other hand, it was found that tetrasaccharide 10¢
was obtained in 51% yield by only changing the anomeric group
from B-phenylthio to a-ethylthio. It should be noted that the a-
ethylthio glycoside S¢ might have been stabilized by the anomeric
effect,'® and that it has lower reactivity than the corresponding 8-
phenylthio glycoside Sa. After screening several protective
groups, the desired tetraglucoside 10e was synthesized in high
yield (total 76% yield based on 3) when p-CF;Bz protected -

ethylthio glucoside Se was used (Entry 5).
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Scheme 2. Double glycosylation of diol 3 with 2.

Table 1. The second one-pot glycosylation of four units
BnO
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Entry Thioglycoside Yield /%
1 S5a:R=Ph(f),R'=Bz Not Detected
2 5b: R =Ph (f), R' = p-CIBz 30
3 Sc:R=Et(a),R'=Bz 51
4 5d: R =Et(a), R' = p-CiBz 71
5 Se: R = Et (a), R' = p-CF3Bz 76

Based on the above results, one-pot heptasaccharide synth-
esis using four building blocks was attempted as shown in Scheme
3. First, TfOH-catalyzed double glycosylation of 3 with 2,
followed by the armed-disarmed coupling with p-CF;Bz-
protected Se afforded tetraglucoside 10e as a major product,
which was confirmed by TLC monitoring. Next, the glycosylation
of the above mentioned trisaccharide unit 8 with 10e was tried by
successively adding NIS. As a result, four glycosidic linkages
were formed sequentially in one-pot manners and fully protected
heptaglucoside 11 was obtained stereoselectively in 48% yield
(based on 3). Finally, the protected 11 was converted to the final
product 1 in 95% yield by saponification of Bz groups and
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Scheme 3. One-pot synthesis of heptasaccharide 11.
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subsequent hydrogenolysis.!'

It is noted that convergent and convenient total synthesis of
methyl hepta-B-glucoside 1 having phytoalexin-elicitor activity
was accomplished by one-pot sequential glycosylation reactions.
Fully protected heptasaccharide 11 was rapidly assembled in only
three steps from the component monosaccharides by two one-pot
reactions. It is also noted that the significant reactivity difference
was observed between a-ethylthio- and B-phenylthio-glucosides,
which indicated that reactivity tuning of thioglycoside donors is
controlled by their anomeric configurations.
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